Answers to Quiz 1

Davis M212

Name: Pledge:

(8pts.) 1. Use integration by parts to justify the following formula: $\int \cos^n (x) dx = \frac{1}{n} \cos^{n-1} (x) \sin (x) + \frac{n-1}{n} \int \cos^{n-2} (x) dx.$

Choose $u = \cos^{n-1}(x)$ and $v' = \cos(x)$, which leads to $u' = (n-1)\cos^{n-2}(x)(-\sin(x))$ and $v = \sin(x)$. Applying integration by parts yields

$$\int \cos^{n}(x)dx = \cos^{n-1}(x)\sin(x) - (-(n-1))\int \cos^{n-2}(x)\sin^{2}(x)dx$$

Using the trig identity $\sin^2(x) = 1 - \cos^2(x)$ and the integral property that $\int (f(x) - g(x))dx = \int f(x)dx - \int g(x)dx$ implies

$$\int \cos^{n}(x)dx = \cos^{n-1}(x)\sin(x) + (n-1)\int \cos^{n-2}(x)dx - (n-1)\int \cos^{n}(x)dx$$

Adding the last term to the left hand side and dividing by n gives the reduction formula.

- (12pts.) 2. Integrate the following:
 - **a.** $\int \frac{e^x}{e^x+1} dx$

Using u-substitution with $u = e^x + 1$ leads to $\int \frac{du}{u} = \ln |u| + C = \ln |e^x + 1| + C$

b. $\int \ln t dt$

Integration by parts with $u = \ln t$ and v' = 1, so $u' = \frac{1}{t}$ and v = t. Applying the formula leads to the antiderivative $t \ln t - \int t \frac{1}{t} dt = t \ln t - t + C$.

c. $\int \frac{2x+3}{x^2+3x-10} dx$

Either *u*-substitution with $u = x^2 + 3x - 10$ or partial fractions with a denominator factorization of (x + 5)(x - 2) will work. For partial fractions, you should end up with the equations A(x - 2) + B(x + 5) = 2x + 3. Plugging in 2 yields 7B = 7, so B = 1. Plugging in -5 yields -7A = -7, so A = 1. Thus, the integral becomes $\int (\frac{1}{x+5} + \frac{1}{x-2}) dx = \ln |x+5| + \ln |x-2| + C$.