<u>TEST 1</u>

Davis	Name:
M212	Pledge:

Show all work; unjustified answers may receive less than full credit.

(18pts.) **1.** Without your calculators, compute the following:

a.
$$\int_0^{\sqrt{\pi/2}} x \cos(x^2) dx$$

u-substitution with $u = x^2$; du = 2xdx; $\frac{1}{2} \int_{u=1}^{u=4} \cos(u) du = \frac{1}{2} (\sin(\pi/2) - \sin(0)) = \frac{1}{2}$.

b. $\int \ln (x+2) dx$ Start with the *t*-substitution t = x+2 to get the integral $\int \ln (t) dt$.

Now do integration by parts with $u = \ln(t)$ and v' = 1 to get $\int \ln(t) = t \ln(t) - \int dt = t \ln(t) - t + C$. The final answer is therefore $(x+2) \ln(x+2) - (x+2) + C$.

c. $\int \frac{x+3}{x^2+7x+6} dx$ Partial fractions. The denominator factors as (x+6)(x+1), so we get A(x+1) + B(x+6) = x+3. Plugging in x = -1 and x = -6 yields $A = \frac{3}{5}$ and $B = \frac{2}{5}$, so $\int \frac{x+3}{x^2+6x+5} dx = \frac{3}{5} \ln |x+6| + \frac{2}{5} \ln |x+1| + C$.

(18pts.) 2. Verify the formula $\int x \cos(x) dx = \cos(x) + x \sin(x)$ (a) by differentiation; and (b) by using integration by parts. Use the formula to calculate $\int e^t \cos(e^t) e^t dt$. (a)

 $(\cos (x) + x \sin (x))' = -\sin (x) + x \cos (x) + \sin (x) = x \cos (x)$ as expected. (b) Let $u = x; v' = \cos (x)$ and the formula comes out directly. Finally, $\int e^t \cos (e^t) e^t dt = \cos (e^t) + e^t \sin (e^t) + C$ (make the *u*-substitution $u = e^t$).

(28pts.) **3.** For all of the following questions, we will use $f(x) = \frac{\sin^2(x)}{x^4}$.

- **a.** Use the Trapezoid Rule with n = 4 to estimate $\int_{1}^{5} f(x) dx$. $\frac{1}{2} \left(\frac{\sin(1)^{2}}{1^{4}} + 2 \frac{\sin(2)^{2}}{2^{4}} + 2 \frac{\sin(3)^{2}}{3^{4}} + 2 \frac{\sin(4)^{2}}{4^{4}} + \frac{\sin(5)^{2}}{5^{4}} \right) = .4089$
- **b.** Find a bound on the error you make in the estimate in part a (You may use $K_2 = 6$). The error is bounded by $\frac{K_2(b-a)^3}{12n^2} = \frac{64^3}{12(4)^2} = 2$.
- c. Use the comparison test to show that $\int_1^{\infty} f(x) dx$ converges. Compare to $\int_1^{\infty} \frac{1}{x^4} dx$,

which is the area under a bigger function since $\sin^2(x) \le 1$, and the bigger function has a finite area by the p test, so the integral $\int_1^\infty f(x) dx$ also converges.

d. Explain in a few sentences how the previous computations could be used to approximate $\int_{1}^{\infty} f(x) dx$. We can use the estimate in part (a) as our estimate of the

area under the curve from 1 to infinity. The error that we computed in part (b) is part of the error in using this estimate, and we could use the area under the curve from 5 to infinity of $\frac{1}{x^4}$ to bound the error of f(x) over that interval. This area will be very small.

(20pts.) 4. Determine whether the following integrals converge or diverge.

a. $\int_{0}^{\frac{\pi}{2}} \frac{\sin(x)}{\cos(x)} dx \int_{0}^{\frac{\pi}{2}} \frac{\sin(x)}{\cos(x)} dx = \lim_{t \to \frac{\pi}{2}^{-}} \left[\int_{0}^{t} \frac{\sin(x)}{\cos(x)} dx \right] = \lim_{t \to \frac{\pi}{2}^{-}} \left[-\ln|\cos(x)||_{0}^{t} \right]$

 $\ln |\cos(0)|$]. As t goes to $\frac{\pi}{2}$ from the left, $\cos(t)$ approaches 0 from the right, and the ln of this value goes to negative infinity, so the integral diverges.

b. $\int_1^\infty \frac{1}{x^{1/2} + e^{3x}} dx$ Since $x^{1/2} > 0$ on the interval in the integral, we have that $x^{1/2} + e^{3x} > 0$

 e^{3x} , or $\frac{1}{e^{3x}} > \frac{1}{x^{1/2} + e^{3x}}$. Since $\int_1^\infty \frac{1}{e^{3x}} dx$ converges (this needs to be shown), the comparison test tells us the the integral $\int_1^\infty \frac{1}{x^{1/2} + e^{3x}} dx$ also converges. (NOTE: you need to justify the correct inequality!)

(16pts.) 5. You are sitting still at a stop light, and the instant the light turns green you hit the accelerator. Your velocity at time t satisfies $v = t^2$, where v is measured in meters per second and t is measured in seconds. Your friend is in the car directly next to you, and her velocity at time t satisfies v = 2t. Who is in the lead after 3 seconds? Make sure you use integration to justify your answer!

Your friend is going faster for the first two seconds and so will be in the lead. She is $\int_0^2 (2t - t^2) dt = t^2 - t^3/3|_0^2 = 4/3$ meters ahead after 2 seconds. From 2 seconds to 3 seconds you are going faster, and you catch up by $\int_2^3 (t^2 - 2t) dt = t^3/3 - t^2|_2^3 = 0 - (-4/3)$. Thus, you are tied after 3 seconds.