Quiz 1

Davis M212 Name: Pledge:

(8pts.) 1. Use integration by parts to justify the following formula: $\int \ln^n (x) dx = x \ln^n (x) - n \int \ln^{n-1} (x) dx$. Use the formula to find an antiderivative for $\int \ln^2 (x) dx$.

Choose $u = \ln^n(x), v' = 1$, hence $u' = n \ln^{n-1}(x)(\frac{1}{x}), v = x$. Integration by parts leads directly to the formula above. Applying this formula to the n = 2 case yields $\int \ln^2(x) dx = x(\ln^2(x)) - 2 \int \ln(x) dx$, and then applying the formula with n = 1 yields $\int \ln^2(x) dx = x(\ln^2(x)) - 2x \ln(x) - \int \ln^0(x) dx = x(\ln^2(x)) - 2x \ln(x) - x + C$.

- (12pts.) 2. Integrate the following:
 - **a.** $\int \frac{\cos(2x)}{\sin(2x)+1} dx$

Use $u = \sin(2x)$, $du = 2\cos(2x)$ to change the integral into $\frac{1}{2}\int \frac{du}{u+1}$. We could do another *u*-substitution to integrate this or just recognize this as $\frac{1}{2}\ln(u+1)+C = \frac{1}{2}\ln(\sin(2x)+1)+C$.

b. $\int \sin^{-1}(t) dt$

Integration by parts using $u = \sin^{-1}(t), v' = 1, u' = \frac{1}{\sqrt{1-t^2}}, v = t$. Applying the formula yields $\int \sin^{-1}(t) dt = t \sin^{-1}(t) - \int \frac{t}{\sqrt{1-t^2}} dt$. A *u*-substitution in the integral leads to $\sin^{-1}(t) dt = t \sin^{-1}(t) + \sqrt{1-t^2} + C$.

c. $\int \frac{2x+7}{x^2+7x+12} dx$

This is a *u*-substitution, with $u = x^2 + 7x + 12$, so the antiderivative is $\ln (x^2 + 7x + 12) + C$. If you didn't recognize that and went through a partial fraction derivation, you would write the integrand as $\frac{2x+7}{x^2+7x+12} = \frac{A}{x+3} + \frac{B}{x+4}$. Solving for A and B leads to A = B = 1 and the same antiderivative.