TEST 1

Show all work; unjustified answers may receive less than full credit.

- (21pts.) 1. Without your calculators or the Tables, compute the following:
	- a. \int_1^e $(\ln(x))^3$ $\frac{(x))^{\circ}}{x}dx$

Set $u = \ln(x), du = \frac{1}{x}$ $\frac{1}{x}dx$, changing the integral to $\int_0^1 u^3 du$ (I change the limits of integration as well). This integrates to $\frac{u^4}{4}$ $\frac{1^4}{4}|_0^1 = \frac{1}{4}$ $\frac{1}{4}$.

b. $\int x \tan^{-1}(x^2) dx$

Set $w = x^2$, $dw = 2xdx$, changing the integral to $\int \tan^{-1}(w)dw$ (I used the variable w instead of u since I will be doing integration by parts). We do integration by parts on this with $u = \tan^{-1}(w)$, $v' = 1$, $du = \frac{1}{1+t}$ $\frac{1}{1+w^2}$, $v = w$ to get $\int \tan^{-1}(w)dw =$ $w \tan(w) - \int \frac{w}{1+w^2} dw$. This last integral is a basic u-substitution with $u = 1 + \frac{1}{2}$ $w^2, du = 2w dw,$ yielding $\int x \tan^{-1}(x^2) dx = w \tan(w) - \int \frac{w}{1+w^2} dw = w \tan(w) - \frac{1}{2w}$ 1 $\frac{1}{2} \ln (1 + w^2) + C = x^2 \tan (x^2) - \frac{1}{2}$ $\frac{1}{2}\ln(1+x^4)+C.$

c. $\int \frac{x+3}{x^2+4x+3} dx$

The integrand simplifies to $\frac{x+3}{(x+3)(x+1)} = \frac{1}{x+1}$. When this is integrated we get $\ln(x+1) + C$. I intended this to be a simple partial fractions, which was fine if you did it that way, but the simplification makes it even easier.

2. Verify the formula $\int x^n e^{ax} dx = \frac{1}{a}$ $rac{1}{a}x^ne^{ax} - \frac{n}{a}$ (21pts.) **2.** Verify the formula $\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx$ (a) by differentiation; and (b) by using integration by parts. Use the formula to calculate $\int x^2 e^{2x} dx$.

> For part (a), we differentiate the right hand side: $\left(\frac{1}{a}x^{n}e^{ax}-\frac{n}{a}\right)$ $\frac{n}{a} \int x^{n-1} e^{ax} dx' = \frac{1}{a}$ $\frac{1}{a}[x^n a e^{ax} +$ $nx^{n-1}e^{ax}$ – $\frac{1}{a}$ $\frac{1}{a}x^{n-1}e^{ax} = x^ne^{ax} + \frac{n}{a}$ $\frac{a}{a}x^{n-1}e^{ax} - \frac{n}{a}$ $\frac{n}{a}x^{n-1}e^{ax} = x^{\tilde{n}}e^{ax}$ as required.

> Part (b) is a straightforward application of integration by parts with $u = x^n, v' =$ $e^{ax}, u' = nx^{n-1}, v = \frac{1}{a}$ $\frac{1}{a}e^{ax}$, leading to the formula $\int x^n e^{ax} dx = x^n \frac{1}{a}$ $\frac{1}{a}e^{ax} - n \int x^{n-1}\frac{1}{a}$ $rac{1}{a}e^{ax}dx$. Moving the $\frac{1}{a}$ to the front of both terms yields the formula.

> The final computation involves applying this reduction formula with $n = 2$ and $a = 2$, giving $\int x^2 e^{2x} dx = \frac{1}{2}$ $\frac{1}{2}x^2e^{2x} - \frac{2}{2}$ $\frac{2}{2} \int x^1 e^{2x} dx$. We can apply the formula again with $n =$ 1, $a = 2$ to get $\int x^2 e^{2x} dx = \frac{1}{2}$ $\frac{1}{2}x^2e^{2x} - \frac{2}{2}$ $\frac{2}{2} \int x^1 e^{2x} dx = \frac{1}{2}$ $\frac{1}{2}x^2e^{2x} - \frac{1}{2}$ $\frac{1}{2}[xe^{2x} - \frac{1}{2}]$ $\frac{1}{2} \int x^0 e^{2x} dx$ = 1 $\frac{1}{2}x^2e^{2x} - \frac{1}{2}$ $\frac{1}{2}xe^{2x} + \frac{1}{4}$ $\frac{1}{4}e^{2x} + C.$

- (21pts.) **3.** Use $f(x) = \frac{1}{x^3+1}$.
	- **a.** Use the Trapezoid Rule with $n = 3$ to estimate $\int_1^4 f(x) dx$.

The width of the interval is $\frac{4-1}{3}$ = 1. Thus, the area in the trapezoids is 4−1 $\frac{-1}{3}(\frac{\frac{1}{13+1}+\frac{1}{23+1}}{2}+\frac{\frac{1}{23+1}+\frac{1}{33+1}}{2}+\frac{\frac{1}{33+1}+\frac{1}{43+1}}{2}$ $\frac{+\frac{1}{4^3+1}}{2}$) \cong .4.

b. Find a bound on the error you make in the estimate in part a.

The hardest part of this is finding the value of K . To get that, we need the second derivative of $f(x) = \frac{1}{x^3+1}$, so $f'(x) = -(x^3+1)^{-2}(3x^2);$ $f''(x) = 2(x^3+1)^{-3}(3x^2) (x^3 + 1)^{-2}(6x)$. We plug in the endpoints and get $f''(1) = \frac{6}{8} - \frac{6}{4} = -\frac{3}{4}$ $rac{3}{4}$ and $f''(4)$ is a really small number, so $K=\frac{3}{4}$ $\frac{3}{4}$. Once we have this, the bound on the error is $|E_T| \leq \frac{\frac{3}{4}(4-1)^3}{12\cdot 3^2}$ $\frac{(4-1)^5}{12\cdot 3^2} = \frac{3}{16}.$

c. Use the comparison test to whether $\int_1^\infty f(x)dx$ converges or diverges.

- I claim that $\frac{1}{x^3+1} < \frac{1}{x^3}$ $\frac{1}{x^3}$. You can justify this either by observing that adding 1 to the denominator makes the denominator bigger and hence the fraction smaller, or you could do the series of equations $1 > 0; x^3 + 1 > x^3; \frac{1}{x^3} > \frac{1}{x^3+1}$. Once this is established, we need to determine the convergence of the integral $\int \frac{1}{x^3} dx$. We either recognize that this is one of our $\int \frac{1}{x^p} dx$ cases with $p > 1$, which implies convergence, or you could do the integral (I leave that to you). Since the larger function has a finite area under it on the interval from 1 to ∞ , the smaller function $f(x)$ must also converge.
- $(20pts.)$ 4. Determine whether the following integrals converge or diverge.
	- **a.** $\int_0^{\frac{\pi}{2}}$ $\sin(x)$ $\frac{\sin(x)}{\cos(x)}dx$

The "problem" for this integral occurs at $x = \frac{\pi}{2}$ $\frac{\pi}{2}$ since the denominator is equal to 0 there. Thus, we write this integral as $\lim_{t \to \frac{\pi}{2}^-} [\int_0^t$ $\sin(x)$ $\frac{\sin(x)}{\cos(x)}dx] = \lim_{t \to \frac{\pi}{2}^-} [-\ln(\cos x)|_0^t] =$ $\lim_{t\to\frac{\pi}{2}^-}[-\ln(\cos t)+\ln 1]$. Since $\cos t\to 0^{\pm}$ as $t\to\frac{\pi}{2}$ $\overline{}$ and $\ln x \rightarrow -\infty$ as $x \rightarrow 0^+,$ we get that this integral diverges.

b. $\int_1^{\infty} \frac{1}{x^{1/2}+1}$ $\frac{1}{x^{1/2}+e^{3x}}dx$

> We compare this to $\int_1^{\infty} \frac{1}{e^3}$ We compare this to $\int_1^{\infty} \frac{1}{e^{3x}} dx$. You can make the case either by saying that adding \overline{x} to the denominator makes the denominator bigger and hence the fraction \sqrt{x} to the denominator makes the denominator larger and help
smaller or you could use the equations $\sqrt{x} > 0$; $e^{3x} + \sqrt{x} > e^{3x}$; $\frac{1}{e^{3x}}$ $\frac{1}{e^{3x}} > \frac{1}{\sqrt{x+1}}$ $\frac{1}{x+e^{3x}}$. We then show that $\int_1^\infty e^{-3x} dx$ is finite, and we use the comparison theorem to say that when the top integral converges the bottom integral (in this case $\int_1^{\infty} \frac{1}{x^{1/2-1}}$ $\frac{1}{x^{1/2}+e^{3x}}dx$ must also converge.

(17pts.) 5. Find the area between the curves $x = y^2 - 4$ and $x = -y^2 - 2y + 8$.

This is going to be a right minus left problem. We must find the points of intersection by setting the equations equal to eachother. When we do that we get $y^2 - 4 =$ $-y^2 - 2y + 8$; $2y^2 + 2y - 12 = 0$; $(2y + 6)(y - 2) = 0$; $y = -3$ or $y = 2$. Thus, the area between these curves is

$$
\int_{-3}^{2} [(-y^2 - 2y + 8) - (y^2 - 4)] dy = (-\frac{2}{3}y^3 - y^2 + 12y)_{-3}^{2} = -\frac{16}{3} - 4 + 24 - (18 - 9 - 36) = 41\frac{2}{3}
$$