Quiz 1

Davis M211 Name: Pledge:

(8pts.) 1. Use integration by parts to justify the following formula: $\int \sin^n (x) dx = -\frac{1}{n} \sin^{n-1} (x) \cos (x) + \frac{n-1}{n} \int \sin^{n-2} (x) dx$ for *n* positive.

Choose $u = \sin^{n-1}(x)$, $dv = \sin(x)dx$: that implies that $du = (n-1)\sin^{n-2}(x)\cos(x)$ and $v = -\cos(x)$. Applying parts we get $\int \sin^n(x)dx = -\sin^{n-1}(x)\cos(x) + (n-1)\int \sin^{n-2}(x)\cos^2(x)dx$. Substituting $\cos^2(x) = 1 - \sin^2(x)$, we get $\int \sin^n(x)dx = -\sin^{n-1}(x)\cos(x) + (n-1)\int \sin^{n-2}(x)dx - (n-1)\int \sin^n(x)dx$. Adding the last term to the other side and dividing by n yields the answer.

- (8pts.) 2. The Environmental Protection Agency was recently asked to investigate a spill of radioactive iodine. The rate of emission of radioactive iodine satisfies $R(t) = R_0 e^{-.004t}$, where R(t) is measured in millirems per hour and R_0 is the initial rate.
 - **a.** If the initial rate at the time of the spill is 5 *milli*rems per hour and serious illness occurs when the exposure reaches 100 millirems, how long do they have to evacuate everyone from the affected area?
 - **b.** What is the average exposure rate over the first 100 hours? When does the actual exposure rate equal the average?
 - **a.** $\int_0^x 5e^{-.004t} dt = 100; e^{-.004x} 1 = -.08$ (with a *u*-substitution). Thus, $x = \ln .92/-.004 = 20.8$ hours before people will become ill.
 - **b.** $\frac{\int_{0}^{100} 5e^{-.004t} dt}{100-0} = \frac{1}{-.08} (e^{-.4} 1) = 4.12.$ This rate is achieved when $5e^{-.004t} = 4.12$, or t = 48.3 hours.

(4pts.) 3. WITHOUT YOUR CALCULATOR, do the following:

- **a.** $\int \sin(e^{2t})e^{2t}dt$
- **b.** $\int_0^{\frac{\pi}{2}} \cos^2(\theta) \sin(\theta) d\theta$
- **a.** Use $u = e^{2t}$ to get $\int \sin(e^{2t})e^{2t}dt = -\frac{1}{2}\cos(e^{2t}) + C$.
- **b.** Use $u = \cos(\theta)$ to get $-\frac{1}{3}\cos^3(\theta)|_0^{\frac{\pi}{2}} = 0 (-\frac{1}{3}) = \frac{1}{3}$.