Quiz 2

Davis Name: M211 Pledge:

(9pts.) 1. Use integration tables to integrate the following:

a.
$$\int \frac{y^2 + 4y + 6}{y^2 + 4y + 5} dy$$

$$y + \arctan(y+2) + C$$

b.
$$\int (x^3 - 5x + 2)e^{-2x}dx$$

$$-e^{-2x}(\frac{1}{2}(x^3-5x+2)+\frac{1}{4}(3x^2-5)+\frac{1}{8}(6x)+\frac{6}{16})$$

c.
$$\int \sin^4(x) \cos^2(x) dx$$

$$\frac{1}{6}\sin^5 x \cos x - \frac{1}{24}\sin^3 x \cos x - \frac{1}{16}\sin x \cos x + \frac{1}{16}x + C$$

- (11pts.) 2. Given the picture of $y = e^{-.01x^2}$, set up (but do not evaluate) sums which can be used to approximate the area under the curve from 1 to 3, subdividing the interval into 8 regions, using:
 - a. Left-hand Riemann sum

 $\sum_{i=0}^{7} f(1+\frac{i}{4})\frac{1}{4}$: this is an overestimate because the rectangles hang over the curve (draw picture).

b. Right-hand Riemann sum

 $\sum_{i=1}^{8} f(1+\frac{i}{4})\frac{1}{4}$: this is an underestimate because the rectangles fall below the curve (draw picture).

c. Trapezoid rule

 $\frac{LHS+RHS}{2}$: when you connect the endpoints, the trapezoid falls below the curve, so this is an underestimate.

d. Midpoint rule

 $\sum_{i=0}^{7} f(1+\frac{2i+1}{8})\frac{1}{4}$: this is an overestimate because the trapezoid with top edge the tangent to the curve at the midpoint hangs over the curve (draw picture).

e. Simpson's rule

$$2Mid(8)+Trap(8)$$

In each case (except Simpson's rule), indicate whether the estimate is an overestimate or an underestimate and explain why (based on the picture).