Γ	lest	1

	Davis CS222	Name: Pledge:
(12pts.)	1. Use truth tables to determine whether the following statement alent (make sure to state whether they are equivalent or not):	
	a. $\overline{p \rightarrow q}; p \wedge \overline{q}$	
	b. $(p \to q) \to r; p \to (q \to r).$	
	c. $(p \rightarrow q) \lor r; (r \lor q) \land p$	
(12pts.)	2. Consider the statement $P(x, y, z) : x^2 + y^2 - z^2 \leq 36$. following are true (justify your answer).	Which of the
	a. $\forall x \forall y \exists z (P(x, y, z))$	
	b. $\forall x \exists y \exists z (P(x, y, z))$	
	c. $\exists x \forall y \forall z (P(x, y, z))$	
(13pts.)	3. Prove the following statement: If x and y are rational numb is also rational.	ers, then $x + y$
(13pts.)	4. Prove the following statement by contradiction: For all x	x and y in the
(13pts.)	real numbers, if $x^2 + y^2 = 9$, then $x \le 3$ and $y \le 3$. 5. Prove the following: $\forall n \ge 1, \sum_{i=1}^{n} (1/2^i) = 1 - (1/2)^n$.	
(13pts.)	6. The Fibonacci sequence is defined as follows: $1,1,2,3,5,8,1$ n^{th} term of the sequence f_n is equal to the sum of the previo	
(12pts.)	so $f_n = f_{n-1} + f_{n-2}$. Prove the $f_n < 2^n$ for all $n \ge 1$. 7. Determine whether the following set equations are true or use Venn diagrams or actual sets, but make sure you label ever	•
	a. $A - (B - C) = (A - B) - C$	
	b. $A \cup (B \cap C) = (A \cup B) \cap C$	
(12pts.)	8. Consider the relation $R = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$ on $\{1, 2\}$	$,2,3,4\}.$
	a. Is this relation reflexive? symmetric? anti-symmetric? each case, either explain your answer or give a counterest	
	b. Draw the digraph of the relation.	