
TEST 3

Davis Name:
CS222 Pledge:

Show all work; unjustified answers may receive less than full credit.

1. Write pseudo code for a recursive algorithm that inputs the the number of times compounding per year, and(10pts.)
outputs the amount of money at the end of a year. Assume that you start with $1000 and the annual
interest rate is 12%. Compute the amount of money you will have if the interest is compounded 4 times in
a year.

1. Compound(n)

2. int = .12
n

3. Recursivepart(n)

4. If n = 0 then Total = 1000

5. Total = (1 + int)Recursivepart(n− 1)

6. end Compound(n)

2. Solve the recurrence relation an = an−1 + 12an−2 with initial conditions a0 = 1, a1 = 1. Verify that your(15pts.)
formula works for n = 3.

Assuming that an = αn, we get αn = αn−1+12αn−2, so α2−α−12 = 0. This factors into (α−4)(α+3) = 0,
so α = 4 or α = −3. The general solution is C14n +C2(−3)n, and we can use the initial conditions to solve
for C1 and C2.

1 = C1 + C2; 1 = 4C1 − 3C2. Multiply the first equation by 3 and add the equations, yielding 7C1 = 4, so
C1 = 4

7 , implying that C2 = 3
7 .

Verifying the n = 3 case, the recurrence relation yields a3 = a2 + 12a1 = 13 + 12(1) = 25. The formula
yields 4

743 + 3
7 (−3)3 = 256−81

7 = 175
7 = 25.

3. What conditions on r and s guarantee that the complete bipartite graph on r + s vertices has an eulerian(15pts.)
cycle? Find, if possible, an eulerian cycle in K2,6,K3,5, and K4,5 (number the edges so I know which order
you have drawn the picture).

r and s must both be even since all vertices must have even degree (the degree in the complete bipartite
graph is either r or s). The eulerian cycle is easy to sketch out in the K2,6 case, and the other two do not
have an eulerian cycle.

4. Show by induction that there is a Hamiltonian cycle in the hypercube for n ≥ 2 (the n-hypercube has vertices(15pts.)
that are n-tuples of 0s and 1s, and two vertices have an edge between them if they differ in only one
component).

See the argument on p. 288 in the book.

5. Construct a Huffman code from the following frequency table.(10pts.)

A B C D E F G H
12 5 8 6 25 4 7 2

The first thing to do is to combine the two lowest frequency elements of the chart, namely F and H (for a
total of 6). I will combine the next lowest element, B, with D at the next stage: you could combine B with
FH. I now combine FH with G, and then combine C with BD. We now combine A with FGH to get 25,
and I will combine E with BCD to get BCDE. We get the following strings from these choices: A = 01; B
= 1000; C = 101; D = 1001; E = 11; F = 0000; G = 001; H = 0001.

6. Dijkstra’s algorithm is the following:(15pts.)

1. procedure dijkstra(w,a,z,L)

2. L(a) := 0

3. for all vertices x 6= a do

4. L(x) := ∞
5. T:=set of all vertices

6. while z ∈ T do

7. begin

8. choose v ∈ T with minimum L(v)

1

9. T := T − {v}
10. for each x ∈ T adjacent to v do

11. L(x) := min{L(x), L(v) + w(v, x)}
12. end

13. end dijkstra

Show how this algorithm can be used to trace the shortest path through the graph listed below in matrix
form.

a v1 v2 v3 v4 v5 v6 z
a
v1

v2

v3

v4

v5

v6

z



−1 1 3 5 −1 −1 −1 −1
1 −1 −1 −1 18 14 −1 −1
3 −1 −1 −1 −1 10 6 −1
5 −1 −1 −1 −1 −1 2 −1
−1 18 −1 −1 −1 −1 −1 1
−1 14 10 −1 −1 −1 −1 5
−1 −1 6 2 −1 −1 −1 9
−1 −1 −1 −1 1 5 9 −1


In step 1, remove a and relabel v1 to 1; v2 to 3; and v3 to 5. In step 2, remove v1 since that is the minimum
label, and relabel v4 to 1 + 18 = 19; v5 to 1 + 14 = 15. In step 3, remove v2 and relabel v5 to 3 + 10 = 13
(we do this since 13 < 15); v6 to 3 + 6 = 9. In step 3, remove v3 and relabel v6 to 5 + 2 = 7 (since 7 < 9).
In step 4, remove v6 and relabel z to 7 + 9 = 16. In step 5, remove v5 and don’t change any labels. In step
6, remove z and don’t change any labels. This ends the algorithm since z is not in T anymore.

7. Use the breadth-first and depth-first algorithms to get spanning trees for the graph listed below in matrix(20pts.)
form. Use s = v1 for both algorithms.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12



0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 0 1 0


Breadth-first algorithm:

1. S := v1

2. V ′ := {v1}
3. E′ := φ

4. while true do

5. begin

6. for each x ∈ S, in order, do

7. for each y ∈ V − V ′, in order, do

8. if (x, y) is an edge then

9. add edge (x, y) to E′ and y to V ′

10. if no edges were added then

11. return(T)

12. S := children of S ordered consistently with the original vertex ordering

13. end

Depth-first algorithm:

1. V ′ := {v1}
2. E′ := φ

2

3. w = v0

4. while true do

5. begin

6. while there is an edge (w, v) that when added to T does not create a cycle in T do

7. begin

8. choose the edge (w, vk) with minimum k that when added to T does not create a cycle in T

9. add vk to V ′

10. w := vk

11. end

12. if w = v1 then

13. return(T)

14. w := parent of w in T

15. end

3

