
TEST 2

Davis Name:
M235 Pledge:

Show all work; unjustified answers may receive less than full credit.

1. Use the second order Taylor polynomial to approximate e.01 cos (−.02), and compare it(17pts.)
to the actual value.

The function we will use is f(x, y) = ex cos (y), and we will do the Taylor Polynomial
about (0, 0). These have partial derivatives fx(0, 0) = 1; fy(0, 0) = 0; fxx(0, 0) =
1; fxy(0, 0) = 0; fyy(0, 0) = −1, so the second order Taylor polynomial is 1 + x + 1

2
x2−

1
2
y2. When we plug in x = .01 and y = −.02, we get 1+ .01+ (.01)2

2
− (−.02)2

2
= 1.00985.

The actual value is approximately 1.0098482, so we are very close.

2. Find the critical points of f(x, y) = 2x2 + 3xy + 4y2− 5x− 4y, and classify them as local(17pts.)
maximum, local minimum, or saddle points.

The partials are fx = 4x+3y−5 and fy = 3x+8y−4. We set each of these equal to 0
and solve for x and y, yielding x = 112

92
and y = 1

23
as the critical point. To determine

whether that is a local max/min or saddle point, we compute fxx = 4; fyy = 8; and
fxy = 3. The Hessian is 4(8) − (3)2 = 23 and fxx > 0, so the critical point is a local
min.

3. Find the point in the plane 3x+2y+z = 14 closest to the origin using derivatives (HINT:(16pts.)
maximize the SQUARE of the distance function).

The square of the distance function for a point (x, y, z) = (x, y, 14 − 3x − 2y) on the
plane from the origin is f(x, y) = x2 + y2 + (14− 3x− 2y)2. Find critical points, so set
fx = 2x− 6(14− 3x− 2y) = 0 and fy = 2y− 4(14− 3x− 2y) = 0. Solving this system
yields x = 3 and y = 2, implying z = 1. This critical point is a local min (and hence
an absolute min) since fxx = 2 + 18 = 20; fyy = 2 + 8 = 10; and fxy = 12 implying the
Hessian is 200− 144 = 56 > 0 and fxx > 0. That minimizes the distance function, so
the closest point is (3, 2, 1).

4. Evaluate the following integrals (HINT: switching the order of integration will help in(30pts.)
some of these cases).

a.
∫ 1
0

∫ 1
y ex2

dxdy

Switching the order of integration yields
∫ 1
0

∫ x
0 ex2

dydx. Doing the inner integral
yields

∫ 1
0 xex2

, and using a u-substitution we get 1
2
(e− 1) as the answer.

b.
∫ 2
1

∫ x
1 exdydx

If we do this without switching the order of integration, we get
∫ 2
1 (xex − ex)dx.

We can do the first term by parts, giving (x−1)ex, and the integral of the second
term is −ex. When we evaluate from 1 to 2 we get e. If we switch the order of
integration, we get

∫ 2
1

∫ 2
y exdxdy. The inner integral is (e2 − ey), and the outer

integral is e2 − (e2 − e) = e, agreeing with the other computation.
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c.
∫ 1
0

∫ 1−x
0

∫ 1−x−y
0

√
zdzdydx

We want to delay integrating the z as long as possible, so we switch the order of
integration. If we do the x first, y second, and z last, we get

∫ 1

0

∫ 1−z

0

∫ 1−y−z

0

√
zdxdydz

This becomes
∫ 1
0

∫ 1−z
0

√
z(1− y − z)dydz = 1

2

∫ 1
0 (
√

z)(1− z)2dz = 8
105

.

5. The average value of a function f(x, y, z) on a region W is defined to be the triple(20pts.)

integral fave =

∫ ∫ ∫
W

f(x,y,z)dxdydz∫ ∫ ∫
W

dxdydz
. Find the average value of the function f(x, y, z) =

xyze(x2+y2)2 over the region bounded by z = 0, z = 1, x ≥ 0, y ≥ 0, and x2 + y2 ≤ 1.
(HINT: switch to a different coordinate system and use the trig identity sin (2θ) =
2 sin (θ) cos (θ))

Switch to cylindrical coordinates. In that setting, we get
∫ ∫ ∫

W f(x, y, z)dxdydz =∫ 1
0

∫ π/2
0

∫ 1
0 r cos (θ)r sin (θ)zer4

rdzdθdr =
∫ 1
0

∫ π/2
0

∫ 1
0 r3er4

cos (θ) sin (θ)zdzdθdr = 1
2

∫ 1
0

∫ π/2
0 r3er4

cos (θ) sin (θ)dθdr =
1
4

∫ 1
0

∫ π/2
0 r3er4

sin (2θ)dθdr = 1
4

∫ 1
0 r3er4

dr = 1
16

(e− 1). We divide this by the volume of
the portion of the cylinder above the region, which is π

4
, to get the average of e−1

4π
.
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