TEST 3

Show all work; unjustified answers may receive less than full credit.

- (17pts.) 1. Compute $\int_{\mathbf{C}} (8x + 36xy)ds$, where $c(t) = (t, t^2, t^3)$ on the interval $0 \le t \le 1$. $\int_C (8x + 36xy)ds = \int_0^1 (8t + 36t^3)$ √ $1 + 4t^2 + 9t^4 dt = \frac{2}{3}$ $\frac{2}{3}(1+4t^2+9t^4)^{\frac{3}{2}}\Big|_0^1 = \frac{2}{3}$ $\frac{2}{3}((14)^{\frac{3}{2}}-1).$
- (17pts.) **2.** Compute $\int_{\mathbf{C}} F \cdot ds$, where $F(x, y, z) = (3x^2y^2z, 2x^3yz, x^3y^2)$ and C is a curve from $(3, 2, 1)$ to $(1, 2, 3)$ (hint: there is an easy way to do this problem).

If you recognize that $F = \nabla f$ for $f(x, y, z) = x^3 y^2 z$, then $\int_C F \cdot ds = f(1, 2, 3)$ $f(3, 2, 1) = 12 - 108 = -96.$

(16pts.) **3.** Evaluate $\int \int_S (x + y + z) dS$ across the rectangle with vertices $(1, 1, 1), (2, 3, 4), (-1, 2, 1),$ and $(0, 4, 4)$.

> Parametrize the surface by $(1, 1, 1) + u(1, 2, 3) + v(-2, 1, 0), 0 \le u \le 1, 0 \le v \le 1$. In this case, the length of $T_u \times T_v$ is $\sqrt{70} \int_0^1 \int_0^1 (3 + 6u - v) du dv = \frac{11}{2}\sqrt{25u - 1}$ $i\quad j\quad k$ 1 2 3 −2 1 0 , which is $\sqrt{70}$. Thus, $\int \int_S (x+y+z)dS =$ 2 √ 70.

(17pts.) 4. Let the velocity field of a fluid be described by $F = xi + yj$ (measured in meters per second). Compute how many cubic meters of fluid per second are crossing the surface of $z = 4 - x^2 - y^2, z \ge 0$, in the direction of increasing z.

 $\int \int_S (x, y, 0) \cdot (2x, 2y, 1) dx dy = \int_0^{2\pi} \int_0^2 2r^2 r dr d\theta = \int_0^{2\pi} 8d\theta = 16\pi.$

- **5.** Use Green's Theorem to show that the area contained by an ellipse $\frac{x^2}{a^2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ (16pts.) 5. Use Green's Theorem to show that the area contained by an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab . Parametrize the ellipse by $x = a \cos(\theta)$ and $y = b \sin(\theta)$. Green's Theorem states that $Area = \int \int_D dx dy = \frac{1}{2}$ $\frac{1}{2} \int_C x dy - y dx = \frac{1}{2}$ $\frac{1}{2} \int_0^{2\pi} (a \cos (\theta) b \cos (\theta) - (b \sin (\theta)) (-a \sin (\theta))) d\theta =$ πab .
- (17pts.) 6. State Stokes' Theorem, and explain why both integrals in Stokes' Theorem will be 0 if the function $F = \nabla f$ for some f (there is a different reason for the two integrals). Stokes' Theorem states that under suitable conditions on the function and the surface,

 $\int \int_S (curl F) \cdot dS = \int_{\partial S} F \cdot dS$. If $F = \nabla f$ for some f, then $curl F = \nabla \times \nabla f = 0$, so $\int \int_S (curl F) \cdot dS = 0$. In the line integral, if $F = \nabla f$ for some f, then $\int_{\partial S} F \cdot dS =$ $f(c(b)) - f(c(a))$. Since ∂S is a simple closed curve, $c(b) = c(a)$ and hence $\int_{\partial S} F \cdot dS = 0$.