<u>TEST 3</u>

Davis	Name:
M235	Pledge:

Show all work; unjustified answers may receive less than full credit.

- (17pts.) **1.** Compute $\int_{\mathbf{C}} (8x + 36xy) ds$, where $c(t) = (t, t^2, t^3)$ on the interval $0 \le t \le 1$. $\int_{\mathbf{C}} (8x + 36xy) ds = \int_0^1 (8t + 36t^3) \sqrt{1 + 4t^2 + 9t^4} dt = \frac{2}{3} (1 + 4t^2 + 9t^4)^{\frac{3}{2}} |_0^1 = \frac{2}{3} ((14)^{\frac{3}{2}} - 1).$
- (17pts.) **2.** Compute $\int_{\mathbf{C}} F \cdot ds$, where $F(x, y, z) = (3x^2y^2z, 2x^3yz, x^3y^2)$ and C is a curve from (3, 2, 1) to (1, 2, 3) (hint: there is an easy way to do this problem).

If you recognize that $F = \nabla f$ for $f(x, y, z) = x^3 y^2 z$, then $\int_{\mathbf{C}} F \cdot ds = f(1, 2, 3) - f(3, 2, 1) = 12 - 108 = -96$.

(16pts.) **3.** Evaluate $\int \int_{\mathbf{S}} (x+y+z) dS$ across the rectangle with vertices (1,1,1), (2,3,4), (-1,2,1),and (0,4,4).

> Parametrize the surface by $(1, 1, 1) + u(1, 2, 3) + v(-2, 1, 0), 0 \le u \le 1, 0 \le v \le 1$. In this case, the length of $T_u \times T_v$ is $\begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ -2 & 1 & 0 \end{vmatrix}$, which is $\sqrt{70}$. Thus, $\int \int_{\mathbf{S}} (x+y+z) dS = \sqrt{70} \int_0^1 \int_0^1 (3+6u-v) du dv = \frac{11}{2}\sqrt{70}$.

(17pts.) 4. Let the velocity field of a fluid be described by F = xi + yj (measured in meters per second). Compute how many cubic meters of fluid per second are crossing the surface of $z = 4 - x^2 - y^2$, $z \ge 0$, in the direction of increasing z.

 $\int \int_{S} (x, y, 0) \cdot (2x, 2y, 1) dx dy = \int_{0}^{2\pi} \int_{0}^{2} 2r^{2} r dr d\theta = \int_{0}^{2\pi} 8d\theta = 16\pi.$

- (16pts.) **5.** Use Green's Theorem to show that the area contained by an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab . Parametrize the ellipse by $x = a \cos(\theta)$ and $y = b \sin(\theta)$. Green's Theorem states that $Area = \int \int_D dx dy = \frac{1}{2} \int_C x dy - y dx = \frac{1}{2} \int_0^{2\pi} (a \cos(\theta) b \cos(\theta) - (b \sin(\theta))(-a \sin(\theta))) d\theta = \pi ab$.
- (17pts.) 6. State Stokes' Theorem, and explain why both integrals in Stokes' Theorem will be 0 if the function F = ∇f for some f (there is a different reason for the two integrals).
 Stokes' Theorem states that under suitable conditions on the function and the surface, ∫∫_S(curlF) · dS = ∫_{∂S} F · dS. If F = ∇f for some f, then curlF = ∇ × ∇f = 0, so ∫∫_S(curlF) · dS = 0. In the line integral, if F = ∇f for some f, then ∫_{∂S} F · dS =

f(c(b)) - f(c(a)). Since ∂S is a simple closed curve, c(b) = c(a) and hence $\int_{\partial S} F \cdot dS = 0$.