Math 350 Spring, 2000

HOMEWORK #4

Do 50 points of the following problems (due 2/10/00).

15 pts. 1 Find the n,M, and d of the binary code whose generator matrix is

(1	0	0	1	1	0	1	
	0	1	0	1	0	1	1	
ĺ	0	0	1	0	1	1	1	J

15 pts. 2 Put the following generator matrix into standard form.

(1)	1	1	1	1	1	1	1	
0	1	0	1	0	1	0	1	
0	0	1	1	0	0	1	1	
$\int 0$	0	0	0	1	1	1	1 /	

- 20 pts. **3** Let C be a code. Define $C^{\perp} = \{x \in F_2^n | \sum_{i=1}^n x_i c_i = 0 \pmod{2} \text{ for every } c \in C\}$. Find E_n^{\perp} , and argue why you think that you have the correct answer.
- * 30 pts. 4 From the vector space V(2,q), an incidence structure A_q is defined as follows. The 'points' of A_q are the vectors of V(2,q). The 'lines' of A_q are the one-dimensional subspaces of V(2,q) and their cosets. The point P 'belongs to' the line L if and only if P is in L. Prove that A_q is a $(q^2, q, 1, q + 1, q^2 + q)$ design. List the points and lines of A_2 and A_3 .