	Davis M211	Name: Pledge:
(10 pts.)	1. Consider the function $f(x) = xe^{-ax}$, where a is constant a	$^{-ax}$, where a is constant and $a > 0$.
	a. Find any local or global maxima or minima of f (show we $f'(x) = x(e^{-ax}(-a)) + e^{-ax}(1) = e^{-ax}(-ax+1)$. We equal to 0, $x = \frac{1}{a}$ is the only critical point, and it is a g	nen $f'(x)$ is set
	b. What effect does increasing the value of a have on the p maxima/minima?	positions of the
	As a increases, the max moves closer to the y -axis.	
	c. Find any inflection points of f .	
	$f''(x) = e^{-ax}(-a) + e^{-ax}(-a)(-ax+1) = e^{-ax}(a^2x - 2x)$ is set equal to 0, $x = \frac{2}{a}$ is the only inflection point.	2a). When this
	d. On the same axes, sketch and label the graphs of f for the (only sketch the curve for $x \ge 0$).	The values of a
(10pts.)	2. A certain firm expects $R(x) = \ln(x)$ in revenue for x d advertising. Suppose you want to maximize your revenue per or $R(x)/x$.	
	a. Find the marginal revenue at $x = e$ $R'(x) = \frac{1}{x}; R'(e) = \frac{1}{e}.$	
	b. Maximize the revenue per dollar invested. We need to matrix take its derivative: $\frac{xR'(x)-R(x)(1)}{x^2} = \frac{x\frac{1}{x}-\ln(x)}{x^2}$. When this 0, we see that $x = e$ is the only critical point, and it will	is set equal to
	c. Show on a graph of $R(x)$ why the maximum revenue per is the same as the marginal revenue at $x = e$ (and contained)	

sentence).

(

(

Show that the tangent line to $y = \ln(x)$ at x = e goes through the origin. The slope of the line going from the origin through the point on the curve is the return per dollar invested, and it is a maximum when this line is tangent to the curve.