$\frac{\text{Test } \# 2}{\text{Take home test (closed book, 2:30 hours)}}$

Davis	Name:
M245	Pledge:

10 pts.

I. Which of the following matrices have the same column space? Which have the same null space? List all pairings, and briefly justify your answers.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix}, D = \begin{pmatrix} 1 & 2 \\ 3 & 6 \\ 5 & 10 \\ 7 & 9 \end{pmatrix},$$
$$E = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}, F = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{pmatrix}$$

10pts. **II.** Find a basis for *NulA*, *ColA*, and *RowA* of the following matrix. State the rank theorem and verify it for this matrix.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 9 & 11 & 13 \\ 3 & 6 & 9 & 12 & 15 & 20 \\ 4 & 8 & 12 & 21 & 25 & 35 \end{pmatrix}$$

- 10pts. **III.** Let V be a vector space and let $\{v_1, v_2, \ldots, v_p\}$ be a collection of vectors in V. Show that $Span\{v_1, v_2, \ldots, v_p\}$ is a subspace of V.
- 10pts. **IV.** Show that the following collection of vectors is a subspace or give a counterexample why it is not a subspace (be careful!).

$$W = \left\{ \begin{bmatrix} a+4b+7\\ 2a+5b+8\\ 3a+6b+9 \end{bmatrix} : a, b \text{ real} \right\}$$

15pts. **V.** Compute the determinant of the matrices E(n), where E(n) is the matrix with 2's down the main diagonal and -1's on the diagonals to either side of the main diagonal,

for
$$n = 2, 3, 4, 5$$
 and 6. For example, $E(5) = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{pmatrix}$. What is

the determinant of E(100)? Full credit only if you can justify your answer (explain what you have done).

10pts. **VI.** Use the concept of volume to explain why the determinant of a 3×3 matrix A is zero if and only if A is not invertible. Do not just quote the theorem from the book which states that this is true: I want a geometrical explanation why it is true. [Hint: Think about the columns of A.]

10pts.

VII. Let $\mathcal{B} = \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \}$ and $\mathcal{C} = \{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix} \}$ be bases for \mathbb{R}^2 . Find the changeof-coordinates matrix from \mathcal{B} to \mathcal{C} and from \mathcal{C} to \mathcal{B} . If $\mathbf{x} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$, find $[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{C}}$.

10 pts.

VIII. Use Mathematica to find a basis for the space spanned by the following vectors. Is

	:
this space equal to R^7 ? Explain your answer.	4
	Ę
	6
	1 -

$\begin{bmatrix} 1 \end{bmatrix}$		[1]		0		0		$\begin{bmatrix} 2 \end{bmatrix}$
2		-1		6		0		1
3		8		-10		4		31
4	,	2	,	4	,	2	,	16
5		15		-20		0		20
6		0		12		1		11
7		0		14		3		22

- 20pts. **IX.** Answer the following true/false questions. In each case, either give a brief (two complete sentences) justification for your answer or provide a counterexample.
 - **A.** The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
 - **B.** If A is a 2×2 matrix with determinant 0, then the columns are the scalar multiples, or a column is zero.
 - **C.** ColA is the set of all vectors that can be written as Ax for some x (A is a $m \times n$ matrix).
 - **D.** Let \mathcal{B} be a basis for a vector space \mathbb{R}^n . If $P_{\mathcal{B}}$ is the change-of-coordinates matrix, then $\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ for any $\mathbf{x} \in \mathbb{R}^n$.
 - **E.** If $\{v_1, \ldots, v_p\}$ are a set of linearly independent vectors from a vector space V and T is a linear transformation from V to W, then $\{T(v_1), \ldots, T(v_p)\}$ are linearly independent in W.